Exercise 17

In Exercises 17-24, find the unknown if the solution of each equation is given:

$$
\text { If } u(x)=e^{4 x} \text { is a solution of } u(x)=f(x)+16 \int_{0}^{x}(x-t) u(t) d t, \text { find } f(x)
$$

Solution

Substitute the solution into both sides of the equation.

$$
e^{4 x}=f(x)+16 \int_{0}^{x}(x-t) e^{4 t} d t
$$

Solve the integral with integration by parts. Let

$$
\begin{array}{lr}
v=x-t & d w=e^{4 t} d t \\
d v=-d t & w=\frac{1}{4} e^{4 t}
\end{array}
$$

and use the formula $\int v d w=v w-\int w d v$.

$$
\begin{aligned}
e^{4 x} & =f(x)+16\left[\left.\frac{x-t}{4} e^{4 t}\right|_{0} ^{x}-\int_{0}^{x} \frac{1}{4} e^{4 t}(-d t)\right] \\
& =f(x)+16\left(-\frac{x}{4}+\frac{1}{4} \int_{0}^{x} e^{4 t} d t\right) \\
& =f(x)+16\left(-\frac{x}{4}+\left.\frac{1}{16} e^{4 t}\right|_{0} ^{x}\right) \\
& =f(x)-4 x+e^{4 x}-1
\end{aligned}
$$

Therefore,

$$
f(x)=4 x+1
$$

